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1            Introduction 

1.1     Cognitive science on low- and high-level – A divided land 

 From its early beginnings to today, the interdisciplinary endeavor of cognitive 
science has led to a fundamentally improved understanding of many aspects 
of cognition. Some of this is due to the multi-leveled approach, as researchers 
have adopted a wide variety of techniques to understand cognitive phenomena 
at various levels of description. One way of distinguishing these different levels 
is by separating them into high- and low-level cognitive processes. Whereas the 
former includes cognitive abilities like planning and reasoning, the latter is gen-
erally seen as including the various modalities of sensory  processing  . 

 There are many reasons for such a seemingly principled  division  . For 
instance, low-level cognition, such as sensory  processing  , exists in virtually 
all animal-species, whereas high-level cognition, as described in more detail 
below, is mostly ascribed to human cognitive processing. In terms of bandwidth, 
vision, a low-level cognitive function, is the most dominant sensory modality in 
humans. Vision can be found in most species, specifically in all chordates (Land    
and Fernald    1992). In many of the latter, e.g. birds of prey, the spatial acuity of 
the visual system even surpasses human performance by a factor of 2 and more 
(Reymond    1985). Similar statements can be made with respect to other sensory 
modalities, such as audition. Sophisticated auditory systems are found in all 
chordates (Alexander 1981) and many species outperform human capabilities 
with respect to frequency range or sensitivity. Importantly, similarities across 
species can also be found with respect to the structures supporting sensory  pro-
cessing  . For instance, although many different forms of receptors for optic signals 
can be found, lens-bearing eyes, as present in vertebrates, have evolved several 
times (Land    and Fernald    1992; Nilsson    1989). Moreover, more proximal structures 
that support sensory  processing   exhibit similar organizational structures (Kaas    
1997). From this it can be concluded that high performance sensory  processing   is 
a general capability, performed by most living species and that it is mostly based 
on related principles. 

 With regard to high-level cognition, there is no general definition or classi-
fication available and the typical assignment is mostly based on intuitions. Yet, 
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researchers agree that logical reasoning, planning and language belong to its 
core capabilities (Thagard    2008). On a broader scope, decision-making, memory 
skills, creativity, general intelligence and social interactions are also mentioned 
in this context. Contrary to low-level cognitive processes, these capabilities are 
mostly thought of as being uniquely human. As studies comparing human and 
animal performance are still scarce, reports of intelligent animal behavior are 
greeted with great attention (Watanabe    ND Huber    2006; Blaisdell    et  al. 2006). 
Summing up, the present state of research ascribes high-level cognitive processes 
primarily to human cognition. 

 A second case for the view of a principled  division   can be made by investi-
gating in how far low- and high-level cognitive processes are approachable with 
modern information processing techniques. Whereas visual processing in artifi-
cial systems, again classified as a low-level cognitive function, can greatly benefit 
from our increased understanding of the cortical visual system (Pinto    et al. 2008; 
Kietzmann    et al. 2009), high-level cognition poses more challenging problems. In 
the realm of sensory  processing  , ideas flow back and forth between the two disci-
plines and the performance of artificial systems can be quantified and compared 
to human performance. Importantly, common belief holds that there are no prin-
cipled obstacles to achieving near-perfect performance with artificial systems. 
In contrast to this, state-of-the-art computer systems targeting high-level cogni-
tive capabilities, as defined above, do not (yet) resemble neuronal structures in 
the least. Doctor Dostert predicted that “five, perhaps three years hence, inter-
lingual meaning conversion by electronic process in important functional areas 
of several languages may well be an accomplished fact”¹ (IBM 1954). After more 
than 50 years, with machines that are 100.000.000 times faster² problems origi-
nating from the domain of high-level cognition are still considered as extremely 
difficult, even though many of them are in fact considered simple by human stan-
dards. Impressive advances have been made in the context of well-defined artifi-
cial settings, e.g. chess playing, but artificial systems still perform poorly in high-
level cognitive tasks that require a combination or integration of many specific 
high-level abilities. A good example is the usage of natural language, an ability 
that requires the integration of background knowledge, linguistic knowledge, 
reasoning, pragmatic aspects, gestures etc. Hence, the widely disparate progress 
approaching low- and high-level cognitive tasks in artificial systems underlines 
the view of a principled  division  . 

1    http://www-03.ibm.com/ibm/history/exhibits/701/701_translator.html .  
2    http://www.tomshardware.com/reviews/core-i7-990x-extreme-edition-gulftown,2874-6.
html ,  http://www.ibm.com/ibm100/us/en/icons/ibm700series/ .  
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 Finally, cognitive phenomena can be divided into high- and low-level on the 
basis of their relation to our body and actions in the real world. Sensory process-
ing seems to be necessarily connected to actions performed by natural agents 
of all developmental levels in real environments (Varela    et al. 1991). Moreover, 
it has been proposed that knowledge of changes of sensory signals contingent 
on performed actions is constitutive of perceptual consciousness (O’Regan    and 
N oe   2001). In contrast to this, high-level cognition, at least in humans, allows 
for abstract reasoning processes that are completely decoupled from concurrent 
or subsequent actions. This line of reasoning does of course not imply that the 
development of abstract reasoning abilities can evolve without grounding in real 
world actions. Nevertheless, reasoning may be performed without direct refer-
ence to actions in the world, once they are developed. Rodin’s “the thinker”, 
being deep in thoughts while completely immobilized, can be seen as a symbol-
ization of this decoupling of high-level cognitive processing and actions in the 
world (Figure  1a). Contrary to this, the Braitenberg    vehicle (Braitenberg    1984, 
Bach    et al. 2007) represents a direct interaction of sensory  processing   and cor-
responding actions (Figure  1b)³ and is therefore an example of pure low-level 
cognition. 

 Figure 1   : The difference between high- and low-level cognition can be symbolized by the con-
trast of “the thinker (Rodin)” and a Braitenberg    vehicle.  

3   Figure 1a is freely available at vectorstuff.blogspot.com, Figure 1b adapted from Bach    (2009) 
with author’s permission.  



120       Peter König, Kai-Uwe Kühnberger and Tim C. Kietzmann

 These arguments match the common intuitions of a fundamental gap between 
the stream of sensory input and the conceptual or symbolic level of interpreta-
tions. In fact, it still seems to be rather magic how analog and distributed sensory 
input can be “lifted“ to a symbolic level on which many high-level cognitive pro-
cesses operate and, back again, how reasoning processes can be propagated to 
the actuator level. Taken together, these properties argue for a principled  division   
of labor between two different cognitive systems employing qualitatively differ-
ent algorithms suited for their respective problem domain. 

     A question that arises naturally from this division of labor is whether the 
two systems, high- and low-level cognition, share common neural substrates or 
whether their function is in fact reflected in distinct cortical systems. Evidence 
for the latter is based on the long tradition of investigations of functional losses 
after localized cortical lesions. Here it was demonstrated that lesions to differ-
ent parts of the cerebral cortex result in selective loss or changes in functional-
ity of high- or low-level cognitive processing capabilities. For instance, damage 
to the cortical region in the occipital pole was found to lead to a loss of visual 
function and perceptual awareness. Additionally, to name just a few, blindsight 
results from a  lesion   of early visual areas (Weiskrantz    1968, Stoerig    and Cowey    
1997); visual agnosia was shown to be the result of lesions to the occipitotempo-
ral cortex (Farah    2000); prosopagnosia can be elicited by lesions to the inferior 
occipital cortex or fusiform gyrus (Steeves    et al. 2009); akinetopsia by lesioning 
paroetal cortex (Zihl    et al. 1983); achromatopsia by lesions to the ventral occipi-
tal cortex (Zeki    1990); and personality and behavior were shown to be affected 
by lesions to the frontal lobe (Barker    1995). Today, this view is complemented 
by studies applying modern imaging techniques, such as fMRI, PET, EEG, and 
MEG that demonstrate a functional compartmentalization in far reaching areas of 
cognition. Indeed, a fair part of the research effort focuses on the localization of 
cognitive functions and the remaining white spots on the cortical map are shrink-
ing quickly. Thus, in addition to above observations, also the rapidly growing 
number of experiments that identify various functional specializations of differ-
ent cortical regions speak in favor of a cortical  dissociation   between high- and 
low-level cognition.  

2     Re-unification by a statistical approach and 
embodiment 

 From the apparent differences in high- and low-level cognitive processes it could 
be proposed that both need to also rest on qualitatively different cortical opera-
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tions and that the respective functional modules therefore exhibit structural dif-
ferences. Indeed, individual areas have been delineated based on cortical struc-
ture in the form of lamination (Brodman 1909). Complementing this structural 
approach, more recent imaging techniques have been used to provide  functional  
definitions of cortical modules (Felleman    and van Essen    1991; Hilgetag    and 
Barbas    2009). By taking both types of information together, it is now possible to 
validate the claim of a direct structure-to-function mapping. As a result, mostly 
early sensory areas and the primary motor areas were shown to be dissociable 
based on functional as well as structural information. However, many regions 
that can be functionally separable cannot be distinguished based on their ana-
tomical structure. Among others, this holds for the large variety of areas in the 
intraparietal lobulus (LIP, VIP, MIP, PRR, AIP), which were shown to be func-
tionally distinguishable despite all being situated within Brodman area 39. In 
addition to this structural similarity across different functionally defined areas, 
larger scale structures exhibit functional  restructuring  . This highly impressive 
capability of the human cortex was demonstrated for auditory information that 
can successfully be rerouted to visual cortex (Su r   et al. 1988). It is also evident 
in blind subjects for whom the visual cortex seems to fulfill detailed sensory 
information processing during Braille reading (Sadato    et al. 1996; Hamilton    and 
Pascual-Leone    1998; Merabet    et al. 2009). From this we can conclude that corti-
cal modules are not limited to their primary function but can adapt to a wide 
variety of tasks. Importantly, it can be hypothesized that the quantitative proper-
ties typically used for a structural separation are more related to a fine-tuning of 
function, but not to qualitative differences of operations in the respective areas. 
That is, different functional specializations do not necessarily match one-to-one 
on different structural specializations. This allows for the proposition that opera-
tions performed in different cortical modules, including both high- and low-level 
cognition, are also not as distinct as the supported functions might suggest, but 
that they are in fact rather comparable. This resonates well with the concept of 
a canonical microcircuit (Douglas    and Martin    2004), which holds that the struc-
ture of neocortical circuits is general and that neuronal circuits in neocortex can 
therefore be considered canonical. 

 Given these observations, we hypothesize that a similar approach can be 
taken for the description of high- and low-level cognition: Although both are 
based on different networks of functionally defined cortical regions, both types of 
cognitive processing may in fact implement comparable operations. As a result, 
 functional differences arise solely from different statistical properties of afferent 
signals and different context of those networks and not from inherently different 
structural  properties   . Put differently, we argue that low-level sensory  processing   
has many more similarities with high-level cognitive reasoning than previously 
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assumed. To illustrate this admittedly bold claim, we concentrate on two central 
examples of low- and high-level cognition in the remainder of this article: invari-
ant object  recognition   and analogical reasoning.   

3     An example of a low-level cognitive process: 
object  recognition   

3.1    The hard problems of object  recognition   

 Cognitive tasks of diverse complexity rely on a successful and reliable recogni-
tion of objects. For instance, consider the recognition of your car in a parking 
lot. Without problems you can identify it immediately in a large array of similar 
objects, despite different light-conditions, occlusions, different viewpoints 
depending on the direction in which you approach it, different retinal sizes that 
arise from different distances, as well as largely diverse background colors and 
clutter. Importantly, object  identification   is fast. Thus, even if timing is more 
crucial and the environment is more dynamic, as in the case of being part of a 
soccer game, we are immediately able to recognize the ball, independently of its 
color or texture, together with the goal and other players albeit their dramatic 
changes in shape upon movement. Finally, consider the more general case of 
object classification, as for instance in the case of classifying an animal as a dog. 
Despite the large variety of sizes, colors and types of dogs, we are very well able 
to successfully complete this task. 

 As these examples illustrate, both types of object  recognition   (identifica-
tion and classification) belong to the most essential capabilities of the human 
visual system and prepare the grounds for many higher-level cognitive processes. 
Although we perform this task constantly and seemingly without effort, it is an 
extremely difficult problem from a computational point of view, as exemplified in 
above examples.  

4     Divide and conquer: processing in the visual 
hierarchy 

 How is the visual system set up in order to solve this complicated task? What 
cortical structures enable the system to fulfill the requirement of highly specific 
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and at the same time robust classifications, i.e. to solve the specificity-vs-invari-
ance problem? In the human brain, invariant object  recognition   is largely accom-
plished in the ventral visual stream (Haxby    et  al. 1991), which exhibits a hier-
archical structure (Felleman    and van Essen   , 1991). Starting from retinal input, 
which passes through the Lateral Geniculate Nucleus (LGN), information enters 
striate cortex (V1), in which neurons are selective to bars of light and basic colors. 
Further downstream, information passes through areas in which neurons exhibit 
receptive fields of increasing complexity and size. These include the areas V2 and 
V4, in which color constancy is accomplished, and the lateral occipital  complex  , 
which is selective to spatially congruent, informative object parts (Lerner    et al. 
2008). Finally, information enters the cortical structures in the inferotemporal 
cortex. Here, cells exhibit selectivity for  complex   shapes including selective object 
views and view-invariant object representations (Tanaka    1996). Moreover, recent 
work demonstrates that neurons in the medial temporal lobe combine high selec-
tivity for individuals with impressive invariance operations (Quiroga     et al. 2005) 
and it is indeed possible to reliably classify and identify visual objects based on 
small populations of neurons in inferotemporal cortex (Hung    et al. 2005). These 
results, and many more that cannot be covered in the scope of this article, paint 
the picture of a systematic division of labor within the ventral stream of the visual 
system. Following the hierarchy of visual areas, neurons exhibit more and more 
 complex   and at the same time increasingly robust response  properties   that lead 
to representations suitable for explicit object  recognition  . 

 Despite our increased understanding of the different neuronal  selectiv-
ity   across the ventral stream, however, it remains largely an unsolved question 
which principles underlie the development of these hierarchical representations 
and underlying cortical structures. Here, the class of normative  approach   is par-
ticularly promising, as detailed below.  

5     Optimality as a general statistical principle: 
from sparseness to  stability   

 In recent years, an increasing number of studies explicitly addressed the variabil-
ity of neuronal response  properties   by a normative  approach  . This notion dates 
back to Barlow   ’s fundamental principle that neuronal representations should 
comply with the relevance for the animal, be suitable for decoding by downstream 
areas, and allow for efficient encoding by virtue of redundancy  reduction   (Barlow    
1961). Specifically the latter endorses the approach that sensory  processing   should 
optimize mathematically defined criteria. These criteria are optimized for a given 
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set of inputs, i.e. natural sensory stimuli. This rather different approach towards 
understanding sensory  processing   has mostly been studied in the visual domain, 
where computational models have successfully demonstrated the emergence of 
receptive field types exhibiting neuronal properties that are comparable to one 
ones found in the visual cortex. Notably, the normative  approach   is complemen-
tary to the experimental approaches: rather than measuring response  properties   
of neurons in individual cortical areas, they are understood as the effect of unsu-
pervised learning from natural input and its statistics. 

 The normative  approach  , which presupposes that neuronal representations 
optimize an objective function, requires a definition of the target properties. Fol-
lowing the requirement of efficient coding, optimality was first formalized on the 
basis of sparse representations. This implies that each representational unit spe-
cifically codes only for a small subset of the typical stimuli; i.e. neuronal recep-
tive fields should be shaped in a way such that they lead to  action   potentials 
for only a small set of effective stimuli. Indeed, it has been found that the neu-
ronal  selectivity   in the area V1 can be understood as adhering to a sparse code, 
given natural input (Olshausen    and Field    1996). It was shown experimentally that 
natural stimuli evoke sparse activity patterns not only in V1, but also in higher 
visual cortices. Moreover, the application of a sparse coding scheme to intraareal 
interactions leads to functional  coupling   that is compatible with the lateral con-
nectivity in V1 (Garrigues    and Olshausen    2008). Finally, optimally sparse repre-
sentations are closely related to independent component analysis, a statistical 
method suitable to infer the independent sources of a superposition of signals 
(Bell    and Sejnowski    1997; Hyvärinen    and O ja   2000). 

 Sparse coding leads by definition to high levels of specificity. This is due to 
the fact that sparseness enforces representations that react to only a small frac-
tion of possible input. As seen in our earlier examples, however, specificity does 
not suffice for successful and robust object  recognition  , as invariance to sensory 
fluctuations and viewing conditions is equally important. This idea is picked up 
in another family of coding principles, which is based on the temporal continuity 
of natural stimuli. Despite changing implementations and names (stability,  slow-
ness  , temporal  coherence  , etc.), the underlying assumption of these approaches 
is that relevant properties typically vary on a slower time-scale than irrelevant 
ones (Földiak    1991; Körding    and König    2001; Wiskott    and Sejnowski    2002). Think-
ing back to our first object  recognition   examples above (your car in a parking lot), 
what is common to all of the described complications is the fact that although 
sensory sampling differs largely from one situation to another, the identity of 
the object remains constant. Exactly this observation is capitalized upon with 
temporal coding schemes, which imply that the identity of an object changes on 
a slower timescale than the associated sensory information. Again, correspond-
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ing computational simulations targeting at striate cortex proved to be rather 
successful (Wiskott    and Sejnowski    2002, Einhäuser    et  al. 2002; Körding    et  al. 
2004, Berkes    and Wiskott    2005). It was shown that  stability   does not only lead to 
simple-cell-like receptive field structures, but also that it can explain the phase 
invariance of  complex   cells. Although many questions are still open (Olshausen    
and Field    2005) the normative  approach   has led to significant progress in a prin-
cipled understanding of primary visual cortex. 

 As an obvious next step, the normative  approach   was extended to higher 
visual cortices further down the ventral stream. For instance, it was shown that 
a stability-optimizing neural network increased the rotation invariance of the 
emerging representations, thereby enhancing recognition capabilities in a set of 
readout neurons (Einhäuser    et al. 2005). Moreover, simulations of hierarchical 
networks based on the visual input of an artificial agent in a natural environ-
ment demonstrated the emergence of increasingly  complex  , yet stable visual rep-
resentations. At the upmost hierarchical level, higher-level representations were 
shown to emerge that were selective to the position of the agent in space, but 
invariant with respect to its orientation (Wyss    et al. 2006; Franzius    et al. 2007). 
These matched properties of place cells as observed in the hippocampus (O’Keefe    
and Dostrovsky    1971). Finally, cells responsive for head-direction and spatial 
view-cells can be explained by the same set of principles (Franzius    et al. 2007, 
Sprekeler    and Wiskott    2011). 

 In addition to the computational work, important support for the  stability   
approach was provided by electrophysiological experiments in which it was 
demonstrated that targeted changes of the temporal  contiguity   of objects lead to 
changes in response  properties   in inferotemporal neurons – a direct prediction of 
a neuronal coding scheme that is based on the  stability   principle (  Li   and DiCarlo    
2010). These important results demonstrate that the normative  approach   does 
not only give a faithful description of neuronal response  properties   throughout 
the ventral stream, but that it also predicts the consequences of experimental 
manipulations. Moreover, the hierarchical application of the  stability   princi-
ple is a promising candidate in the attempt to close the gap to invariant object 
 recognition  . Thus, invariant object  recognition   and the development of neuro-
nal response  properties   can be partly understood as a consequence of optimal 
sensory representations. 

 Besides to the well-studied visual domain, the normative  approach   has also 
been applied to other sensory modalities, such as auditory and somatosensory 
processing (Klein    et al. 2003; Hipp    et al. 2005; Duff et al. 2007). Taken together, 
these studies indicate that the wide variety of response  properties   on different 
levels of the visual system and of other modalities are fully compatible with a 
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single set of principles governing sensory processing: Sparseness,  slowness   and 
decorrelation. 

 Above considerations are mostly based on the case of object  recognition   in 
which variations in sensory sampling originate from one object. However, it can 
also be argued that the resulting networks exhibit a most crucial new property: 
they can generalize from invariant object  identification   to the case in which differ-
ent objects are associated with one label (object classification, our third example 
above). If object classification is understood as requiring invariance over object 
identities (as opposed to sensory variation), then the task could in principle be 
accomplished by the same normative  approach   as that lead to an increasing 
invariance over sensory sampling only. If this is indeed possible, then this implies 
that different objects of the same category share similar aspects of cortical repre-
sentation. It has to be noted, however, that despite our ability to classify objects, 
we are still well able to recognize individual object instances under a great variety 
of conditions and viewpoints.  

6     Combining supervised and unsupervised 
learning schemes for successful object 
 recognition   

 The renaissance of neural networks in the ’80s of the 20 th  century is tightly linked 
with the discovery and re-discovery of training methods for hierarchical neural 
networks (Werbos    1974; LeCun    1986; Rumelhart    et al. 1986). How does an unsu-
pervised training scheme, such as the normative  approach   described above, 
match with the typically utilized supervised algorithms of artificial neural net-
works? For the latter, the parameters and connection weights are iteratively tuned 
to match the output to the desired result. By now this work has expanded to a 
huge field and excellent reviews and textbooks are available (Bishop    2006). For 
the present purpose, however, we want to highlight a single specific problem only. 
These supervised learning procedures require labeled data, which are scarce and 
expensive in real life and thus might hinder proper convergence and generaliza-
tion of the network structures. Hence, it is attractive to combine these methods 
with unsupervised learning, i.e. a normative  approach   described above. Indeed, 
applying unsupervised training to all layers of a hierarchical network but the last, 
and complementing this approach with supervised training of the output layer 
significantly reduces complexity of learning at a small price in performance only 
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(Einhäuser    et al. 2005, Franzius    et al. 2008). Hence, the normative  approach   is 
fully compatible and fosters object  recognition   in hierarchical networks.  

7     From optimal sparseness, and optimal  slowness   
to optimal predictability 

 The family of temporal coherence/slowness/stability approaches has been shown 
to explain many aspects of receptive field properties found in the visual hierar-
chy and thereby provides a principled approach for understanding invariant 
object  recognition  . However, if  stability   based on the statistics of natural input 
was the only objective function that is optimized in the mammalian cortex then 
the question arises why different species exhibit radically different sensory repre-
sentations. Previously, we have put forward the hypothesis that sensory systems 
optimize the capabilities to predict and support sensory consequences of actions 
(König    and Krüger    2006). Moreover, sensory selectivity should be shaped in a 
way such that they optimally support the potential actions of the agent. Because 
of this, neuronal representations should also be tuned to address those features 
that are optimally predictable with respect to the agent’s actions. This entails 
the crucial step that the sensory predictability is integrated into the previously 
defined objective function (Weiler et al. 2010). 

 With the reference to different actions, the principle of predictability refers 
implicitly to the behavioral repertoire of the agent. Compared to the previously 
mentioned principles, this is a decisive step. Given that the visual systems of 
humans, non-human primates and carnivores differ in profound ways, relating 
visual processing to the behavioral repertoire opens a new avenue to understand-
ing these differences.  

8     Towards optimal high-level processes: the 
example of analogies 

 How can we bring together the normative  approach  , which has been successfully 
applied in the domain of visual processing, a low-level cognitive function, with 
a high-level cognitive process such as the formation of analogies? In this section 
we will present our central claim that the principle of optimal  action   predict-
ability and invariant actions supplies a unified framework of low-level and high-
level cognitive functions. With this concept, we move from investigating purely 
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sensory features to active representations that jointly address sensory informa-
tion and the agent’s  action   repertoire. 

 As an illustrative example, consider the case of the soccer ball from above. 
Kicking the ball requires the player to first recognize the individual ball, an item 
which was trained earlier, before any aiming or kicking can be accomplished 
(object recognition). However, if we were to swap the ball with a different one, 
it would nevertheless be possible for the player to immediately recognize the 
item to be kicked and to perform the appropriate  action  . Although this example 
might seem trivial at first, the performed computation is more complicated. This 
is because the player did not only generalize from one ball to a different exemplar 
(classification based on afforded actions), but also performed a generalized pre-
diction of the consequences of the  action  . It is therefore an example of invariant 
actions. Importantly, despite the simplicity of the example, what has happened 
through the described generalization in sensory-motor space can in fact be seen 
as the drawing of an  analogy  . In the following sections, we will first describe the 
general research on (predictive) analogies before we describe the details on how 
both research areas can be understood on the basis of a unifying approach.  

9    (Predictive) analogies 
 Analogies are in the intense focus of research addressing high-level cognitive pro-
cesses. Although an important topic in many disciplines for a long time, their 
scientific study in the context of cognitive science started with the seminal paper 
(Gentner    1983) introducing the  Structure-mapping theory . This theory is based on 
the idea that establishing an analogical relation is a structural comparison of two 
domains, such that an “interesting” substructure in the source domain is aligned 
to an “interesting” substructure of the target domain. In other words, the forming 
of analogies relies on identifying commonalities of the two substructures. The 
structure-mapping  theory   has been proven its remarkable potential and is a de 
facto standard in cognitive models of analogy-making. Furthermore, the techni-
cal realization of the structure-mapping engine provides a standard computa-
tional model (Falkenhainer    et al. 1998). 

 There are at least three classical domains from which typical examples of 
high-level cognition involving analogical reasoning are drawn: geometry (Evans    
1968), naïve physics (Falkenhainer    et al. 1998), and formal languages (Hofstadter    
et al. 1995). Besides these classical domains, however, many other domains have 
been discussed in the literature (intelligence tests, metaphorical expressions of 
natural language, problem solving, didactics of mathematics, sketch recogni-
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tion etc.). Accompanying the variety of domains, researchers proposed a variety 
of different frameworks to account for the observed phenomena, ranging from 
symbolic models, like  Structure-mapping theory  or  Heuristic-driven-theory-projec-
tion  (Schwering    et al. 2009), to neurally inspired frameworks, like  Learning and 
inference with schemas and analogies  (Hummel    and Holyoak    1997) and hybrid 
approaches, like  Associative memory-based reasoning  (Kokinov    and Petrov    2001). 
Despite its symbolic nature,  Heuristic-driven-theory-projection  and  Structure 
mapping theory  explicitly distinguish between low-level and high-level processes. 
 Associative memory-based reasoning  models all cognitive levels, but explicitly 
distinguishes between symbolic (reasoning-related) representations and neurally 
inspired activation spreading for attention and priming mechanisms. A similar 
separation holds in our opinion for the concept of  Learning and inference with 
schemas  and analogies. Hence, all of these frameworks accept the principled 
 division   of low-level and high-level cognitive processes. 

 An important class of analogies is given by so-called predictive  analogies   
(Indurkhya    1992). Predictive analogies explain a new domain (target) by transfer-
ring information (knowledge) from the source to the target, such that non-trivial 
new conclusions can be drawn in the target domain. Because of this productive 
aspect, (predictive) analogies are often considered as a source of creativity and a 
mechanism for analogical, i.e. concept-guided, learning (Friedmann et al. 2009; 
Gust    and Kühnberger    2006). For example, in the naïve physics domain, predictive 
 analogies   relate physical domains that are hardly accessible by our direct experi-
ence to domains that have perceivable properties. Due to the rich explanatory 
power supported by the source domain it is therefore possible to draw predictions 
in the target domain, which can then be experimentally evaluated. For example, 
let’s consider an  analogy   between a water pipe system and an electric circuit. In 
the water pipe system, it can be observed that a “current” is triggered by “pres-
sure” and that the system is necessarily closed. Another observation would be 
that “narrowing wires” influence the ongoing current. If we now apply these 
observations to previously learned concepts from the domain of electricity (the 
flow of electrons is triggered by a voltage difference, and a resistor influences the 
flow of electrons), the  analogy   is striking. Importantly, the  analogy   allows for the 
possibility of drawing new inferences. An example of such a prediction would 
be that adding a further resistance into the circuit should again reduce the flow 
of current. Notice that although these two exemplary domains were both chosen 
from the field of naïve physics, they do not show strong similarities, but are quite 
different from each other concerning the observable properties. Yet, the forma-
tion of analogies allowed for predictions from one domain to another.  
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10    Object classification as predictive  analogy   
 Now let us consider predictive  analogies   in the context of object  recognition  . 
First, it should be noted that analogies are already used in current visual sketch 
recognition systems and in systems designed for the recognition of geomet-
ric regularities in intelligence tests (Lovett    et al. 2009; McLure    2010). Although 
such applications of analogy-making systems in the field of object  recognition   
are rather new, some promising results for standardized tests in the geometry 
domain have already been achieved (e.g. Raven’s progressive matrices; Lovett    
et al. 2010). Sketch-recognition systems for analogy-making typically work solely 
on the perceptual level, i.e. they identify important regions and features of such 
regions for an analogical comparison. In contrast to this, further aspects of cogni-
tion, like possible actions or functional properties of objects that are represented, 
do not play a role. 

 As an additional step, let us consider a case in which possible actions or 
action-outcomes can be included. Let us again consider the case in which we are 
presented with an object (e.g. a soccer ball) and need to classify it. Starting with 
the visual features of the object, it is possible to deduce properties that are rel-
evant for an interaction with the object. We call this a ‘predictive property’ of an 
object. An example of such a property is “when kicked, it will roll”. Furthermore, 
we might reasonably expect “when rolling on flat smooth ground, it will continue 
to roll for some time”. However, this sequence of processing steps (from visual 
to predictive properties) is not necessarily required. Instead of starting with a 
visual analysis leading up to the recognition of an object and onwards to poten-
tial actions, we can also twist the argument and assign the primary importance to 
potential interactions with the object and thereby base object  recognition   on this 
set of afforded actions. Now, an object that satisfies the properties “when kicked, 
it will roll” and “when rolling on flat smooth ground, it will continue to roll for 
some time” is by (functional) definition a ball. With this, we have moved from 
a purely visual to a functional  definition  . Nevertheless, the provided functional 
 definition   of a ball can still be fulfilled via purely visual properties. 

 With the above case of a soccer ball, we have intentionally chosen an intro-
ductory example that is highly suitable for the classical approach that starts with 
a visual analysis that leads up to object  recognition   and only from there to func-
tional predictions and we presented the functional  definition   as an alternative 
view. A visual  definition   can be seen in the well-known tradition in linguistics 
and logic of defining a concept by its intention, i.e. by the properties and attri-
butes of the concept (Frege    1960). In the visual domain, such properties and attri-
butes must be perceivable and as discriminative as possible. Important differ-
ences between this tradition and our proposal to define a ball functionally are 
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the explicit emphasis of action-centered and manipulatory properties and the 
predictive character of such properties in the functional  definition  . Yet, already 
a slightly more  complex   example uncovers numerous problems with this purely 
visual approach. What is a chair? A quick look into Wikipedia gives a reasonable 
description: “a chair is a stable, raised surface used to sit on, commonly for use 
by one person”⁴. In normal circumstances, a raised surface can be defined based 
on visual features. A chair put upside down, however, has no raised surface 
anymore and thereby violates the visual definition – yet it is still a chair. On the 
other hand, a cube does have a raised surface, but it is usually not considered to 
be a chair. These problems leave us with the remainder of the definition: “to sit 
on”. This part puts the focus on the use of the object and is in essence a predictive 
 analogy   of the form “when you put your weight on it, you will not fall down”. In 
line with this, the Oxford Dictionary directly concentrates on the function of a 
chair, which is “a separate seat for one person, …”⁵. Notice that such problems 
occur necessarily with every intentional definition, because it is not possible to 
give a sufficient and necessary set of (visual) properties and attributes for classi-
fying every potential instance correctly. Thus, as an alternative to a purely visual 
 definition  , we follow the approach that predictive  analogies   map functional con-
nections and thereby are a vital part of the object definition. 

 While it has to be admitted that the original definition of  predictive  analo-
gies does not perfectly fit into the domain of object  recognition  , successful per-
formance in the visual domain nevertheless requires a transfer of (functional) 
knowledge from known examples to unseen ones in order to make the right clas-
sification and to select appropriate actions. Hence, although the original context 
of predictive  analogies   is in fact a different one, it seems unproblematic to call 
such analogies in the domain of object  recognition   to be predictive.   

11     How can we understand the emergence of 
analogies? – A unifying approach 

 Again, we start with a simple example: the case of driving your car to work in 
the morning and back again in the evening. Of course, while approaching your 
car in the morning, you recognize it albeit visually very dissimilar conditions. 
Moreover, (higher) cortical areas implement afforded actions (cyan). Once in the 
car, a specific  action   representation is activated (blue region) when you press the 

4    http://en.wikipedia.org/wiki/Chair .  
5    http://www.oxforddictionaries.com/definition/chair?view=uk .  
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right lever (gas pedal) with your foot and the sensory consequences of this  action   
are predicted. This situation is visualized in  Figure 2  in which part of the sensory 
representation (green area), as well as the  action   state (blue area, e.g. extension 
of the right leg and foot represented by changes in nodes 10 and 14) are altered by 
the active afforded actions (node 12 in cyan area). Because the now altered state, 
the afforded actions have changed as well (cyan area, pushing the break would 
now have an effect and opening the door is prohibited as represented by changes 
in activity of nodes 9 and 13). After work on the way home, it can be assumed that 
large parts, although not all, of active visual representations are identical to the 
ones activated in the morning⁶, while some aspects might differ (e.g. no coffee in 
the cup holder (green node 7)). This has consequences on the sensory, afforded 
actions, and motor level. Yet, pressing the right pedal yields as expected the same 
effect and the sensory representation is transformed. In this case, the  analogy   is 
supported by largely overlapping sensory and  action   representations, which is in 
turn due to the performed invariant object  recognition  . 

 Compared to your own car, driving a different car to work introduces some 
more changes. For instance, the color and the geometry of the seat might be dif-
ferent. Yet, pressing the right pedal does lead to an acceleration and the predic-
tions of sensory changes based on the experience on the former car are correct. 
This again can be considered as an  analogy  , which is supported by invariant 
object classification (different individual, same class) and its associated predic-
tive properties. Indeed, we argue that despite an overwhelming amount of vari-
ance of sensory signals, the basic functionality is identical in both cases. Only 
because of this can the two objects be considered to belong to the same class. 
In this case the problem of invariant  action   representation has been transferred 
to invariant object classification. Now again consider driving a pellet jack. This 
might yield unexpected results although it does have a steering wheel, foot pedal 
and is part of the general category car. Yet, some come with a left foot accelera-
tor pedal and using it in the usual way leads to a mismatch of predictions of the 
sensory consequences of actions and reality. Although the object is obviously a 
vehicle allowing a partly overlapping set of afforded actions (including pressing 
the right pedal), the result is not the same and the  analogy   breaks down. This 
demonstrates that the predictive framework is in fact working on probabilities 
and thus does not always allow for literal logical inferences. 

 Although our examples might lead to this view, it is in general not possible 
to neatly divide the different representational areas into sensory representa-

6   For the sake of the argument and visualization we assume a highly sparse representation of 
sensory signals (green). Please note, however, that a coarse population code does not change the 
principle of the argument.  
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tions, afforded actions, and motor representations (figure 3D). To the contrary, 
a gradual transformation of sensory representations to motor actions leads to a 
setup in which neurons at each level act as “sensory” representations feeding 
bottom-up input to higher levels, modulate other potential affordances by tan-
gential interactions at the same level and predict “action” induced changes of 
sensory representations at the lower level. The label of sensory/affordance/motor 
representations is therefore relative to the viewpoint. Still, even with this view the 
approach is fully compatible with a hierarchical network composed of general 
processing units according to a small set of optimization principles. 

 In our car example, the common set of afforded actions directly mirrors the 
invariant processing in the bottom-up pathway and sensory representations can 
be assumed to largely overlap. Hence, the prediction of sensory changes induced 
by the afforded  action   applies to the whole set of similar sensory representations. 
This is, however, not a necessary precondition. In general the afforded  action   is 
dependent only on a small part of the sensory representation and invariant with 
respect to other parts. This property defines it as an invariant  action  , which is at 
the core of making a predictive  analogy  . 

  

Figure 2   : Schema of gradual transformation of sensory representation via affordances to motor 
actions. For detailed description see text.  
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12       Easy and difficult analogies 
 In many everyday situations (and in the example above), the  analogy   comes quite 
natural such that, although being one, it is often not considered to be an  analogy   
at all. In this section, we now consider more  complex   situations in which the 
overlap of sensory representations is not that large and the concept of invariant 
actions is more explicit. In classic examples, the basic constituents differ from 
each other in fundamental ways: To see this, consider, for example, the famous 
Rutherford  analogy   between the solar system, i.e. a system of planets revolving 
around a sun, and an analogous atom model, in which electrons are no longer 
homogeneously distributed as in the historically prior “plum pudding” model, 
but are revolving around a nucleus. In such examples, the overlap of sensory rep-
resentations is minimal or even not existing and structural commonalities on a 
higher, i.e. abstract, level seem to be important. This brings us back to the origins 
of the scientific study of analogies in cognitive science in which rather abstract 
domains were considered. How are analogies emerging under such conditions 
that seem to be completely decoupled from any sensory representations? An 
explanation can be given by considering a situation in which the solar system – 
atom model  analogy   is visualized in form of diagrammatic representations (as in 
a scenario of a teaching situation in high school). In this form of representation, 
the constituents are in fact very similar to each other. There is a center, revolving 
objects represented as little circles and there are attracting and retracting forces 
etc., in short, the  analogy   is striking. It is rather uncontroversial that the emer-
gence of the abstract conceptualization of a revolution movement is without any 
doubts grounded on a simpler, more concrete level and learned by using simpler, 
more concrete examples. Sensory representation, among other aspects as,  is  such 
a concrete level establishing a solid foundation of such generalizations.  

13    Object recognition, context, and actions 
 It is well-known that object  recognition   performances in psychological experi-
ments change significantly, if the object in question is put into varied more or 
less prototypical contexts (flying eagle vs. sitting eagle, Zwaan    et  al. 2002). If 
object  recognition   has anything to do with establishing analogical relations, then 
context effects need to be considered also for analogies. How can context effects 
be transferred to the domain of  analogy   making? We suggest that contextual 
effects in the visual domain are quite often reducible to even more fundamental 
afforded actions and their representations. This is mainly due to the fact that per-
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ception and recognition tasks never occur without a dynamic environment and 
an active agent. For natural scenes, the  coupling   of the recognition of an object 
and action-related aspects is natural (eagles fly, planes fly as well, therefore they 
need wings etc.).   

14    Summary and conclusions 
 We propose that a key to overcome the artificial separation of low-level and 
high-level cognition is the concept of invariant actions, which optimally predicts 
action-induced changes of sensory signals. This concept is rooted in the ideas of 
Gibson    (1977), yet makes crucial extensions. (1) To a first order of approximation, 
cortical processing is based on cortical modules of homogeneous structure. The 
function of these modules is to transmit optimally predictable parts of afferent 
signals to higher levels and to make predictions of changes of lower-level repre-
sentations. Hence, functional differences originate mostly in the differences in 
input/output connectivity. (2) The optimization process leads to the emergence 
of invariant representations. Afforded actions emerge gradually in a hierarchical 
processing scheme obliviating a strict separation in sensory and motor represen-
tations. Focusing on the bottom-up direction, these might be viewed as invariant 
object representations, focusing on the top-down direction, these are invariant 
 action   representations. (3) Invariant actions are the core of predictive  analogies  . 
In most situations, the invariance is so natural that we emphasize invariant object 
 recognition   and do not realize that the implied actions are based on predictive 
 analogies  . The more arcane invariant actions, the classical examples of predic-
tive  analogies  , are at the heart of higher cognitive functions. Together, these three 
steps establish “optimally predictive active representations” as a unified descrip-
tion and postulate a uniform cortical substrate and functional mechanisms for 
low-level and high-level cognitive processes.   
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